Senin, 08 Februari 2010

Tsunamis
Killer Waves
Main Content

Photograph by Deshakalyan Chowdhury/AFP/Getty Images
timerCount('primary_photo');
A tsunami is a series of ocean waves that sends surges of water, sometimes reaching heights of over 100 feet (30.5 meters), onto land. These walls of water can cause widespread destruction when they crash ashore.
These awe-inspiring waves are typically caused by large, undersea earthquakes at tectonic plate boundaries. When the ocean floor at a plate boundary rises or falls suddenly it displaces the water above it and launches the rolling waves that will become a tsunami.
Most tsunamis, about 80 percent, happen within the Pacific Ocean’s “Ring of Fire,” a geologically active area where tectonic shifts make volcanoes and earthquakes common.
Tsunamis may also be caused by underwater landslides or volcanic eruptions. They may even be launched, as they frequently were in Earth’s ancient past, by the impact of a large meteorite plunging into an ocean.
Tsunamis race across the sea at up to 500 miles (805 kilometers) an hour—about as fast as a jet airplane. At that pace they can cross the entire expanse of the Pacific Ocean in less than a day. And their long wavelengths mean they lose very little energy along the way.
In deep ocean, tsunami waves may appear only a foot or so high. But as they approach shoreline and enter shallower water they slow down and begin to grow in energy and height. The tops of the waves move faster than their bottoms do, which causes them to rise precipitously.
A tsunami’s trough, the low point beneath the wave’s crest, often reaches shore first. When it does, it produces a vacuum effect that sucks coastal water seaward and exposes harbor and sea floors. This retreating of sea water is an important warning sign of a tsunami, because the wave’s crest and its enormous volume of water typically hit shore five minutes or so later. Recognizing this phenomenon can save lives.
A tsunami is usually composed of a series of waves, called a wave train, so its destructive force may be compounded as successive waves reach shore. People experiencing a tsunami should remember that the danger may not have passed with the first wave and should await official word that it is safe to return to vulnerable locations.
Some tsunamis do not appear on shore as massive breaking waves but instead resemble a quickly surging tide that inundates coastal areas.
The best defense against any tsunami is early warning that allows people to seek higher ground. The Pacific Tsunami Warning System, a coalition of 26 nations headquartered in Hawaii, maintains a web of seismic equipment and water level gauges to identify tsunamis at sea. Similar systems are proposed to protect coastal areas worldwide.
timerCount('article_body');
reaching heights of over 100 feet (30.5 meters), onto land. These walls of water can cause widespread destruction when they crash ashore.
These awe-inspiring waves are typically caused by large, undersea earthquakes at tectonic plate boundaries. When the ocean floor at a plate boundary rises or falls suddenly it displaces the water above it and launches the rolling waves that will become a tsunami.
Most tsunamis, about 80 percent, happen within the Pacific Ocean’s “Ring of Fire,” a geologically active area where tectonic shifts make volcanoes and earthquakes common.
Tsunamis may also be caused by underwater landslides or volcanic eruptions. They may even be launched, as they frequently were in Earth’s ancient past, by the impact of a large meteorite plunging into an ocean.
Tsunamis race across the sea at up to 500 miles (805 kilometers) an hour—about as fast as a jet airplane. At that pace they can cross the entire expanse of the Pacific Ocean in less than a day. And their long wavelengths mean they lose very little energy along the way.
In deep ocean, tsunami waves may appear only a foot or so high. But as they approach shoreline and enter shallower water they slow down and begin to grow in energy and height. The tops of the waves move faster than their bottoms do, which causes them to rise precipitously.
A tsunami’s trough, the low point beneath the wave’s crest, often reaches shore first. When it does, it produces a vacuum effect that sucks coastal water seaward and exposes harbor and sea floors. This retreating of sea water is an important warning sign of a tsunami, because the wave’s crest and its enormous volume of water typically hit shore five minutes or so later. Recognizing this phenomenon can save lives.
A tsunami is usually composed of a series of waves, called a wave train, so its destructive force may be compounded as successive waves reach shore. People experiencing a tsunami should remember that the danger may not have passed with the first wave and should await official word that it is safe to return to vulnerable locations.
Some tsunamis do not appear on shore as massive breaking waves but instead resemble a quickly surging tide that inundates coastal areas.
The best defense against any tsunami is early warning that allows people to seek higher ground. The Pacific Tsunami Warning System, a coalition of 26 nations headquartered in Hawaii, maintains a web of seismic equipment and water level gauges to identify tsunamis at sea. Similar systems are proposed to protect coastal areas worldwide.
timerCount('article_body');
Hurricanes
Engines of Destruction
Main Content

Photograph courtesy NASA/GSFC
timerCount('primary_photo');
Hurricanes are giant, spiraling tropical storms that can pack wind speeds of over 160 miles (257 kilometers) an hour and unleash more than 2.4 trillion gallons (9 trillion liters) of rain a day. These same tropical storms are known as cyclones in the northern Indian Ocean and Bay of Bengal, and as typhoons in the western Pacific Ocean.
The Atlantic Ocean’s hurricane season peaks from mid-August to late October and averages five to six hurricanes per year.
Hurricanes begin as tropical disturbances in warm ocean waters with surface temperatures of at least 80 degrees Fahrenheit (26.5 degrees Celsius). These low pressure systems are fed by energy from the warm seas. If a storm achieves wind speeds of 38 miles (61 kilometers) an hour, it becomes known as a tropical depression. A tropical depression becomes a tropical storm, and is given a name, when its sustained wind speeds top 39 miles (63 kilometers) an hour. When a storm’s sustained wind speeds reach 74 miles (119 kilometers) an hour it becomes a hurricane and earns a category rating of 1 to 5 on the Saffir-Simpson scale.
Hurricanes are enormous heat engines that generate energy on a staggering scale. They draw heat from warm, moist ocean air and release it through condensation of water vapor in thunderstorms.
Hurricanes spin around a low-pressure center known as the “eye.” Sinking air makes this 20- to 30-mile-wide (32- to 48-kilometer-wide) area notoriously calm. But the eye is surrounded by a circular “eye wall” that hosts the storm’s strongest winds and rain.
These storms bring destruction ashore in many different ways. When a hurricane makes landfall it often produces a devastating storm surge that can reach 20 feet (6 meters) high and extend nearly 100 miles (161 kilometers). Ninety percent of all hurricane deaths result from storm surges.
A hurricane’s high winds are also destructive and may spawn tornadoes. Torrential rains cause further damage by spawning floods and landslides, which may occur many miles inland.
The best defense against a hurricane is an accurate forecast that gives people time to get out of its way. The National Hurricane Center issues hurricane watches for storms that may endanger communities, and hurricane warnings for storms that will make landfall within 24 hours.
timerCount('article_body');
While avalanches are sudden, the warning signs are almost always numerous before they let loose. Yet in 90 percent of avalanche incidents, the snow slides are triggered by the victim or someone in the victim's party. Avalanches kill more than 150 people worldwide each year. Most are snowmobilers, skiers, and snowboarders.
Many avalanches are small slides of dry powdery snow that move as a formless mass. These "sluffs" account for a tiny fraction of the death and destruction wrought by their bigger, more organized cousins. Disastrous avalanches occur when massive slabs of snow break loose from a mountainside and shatter like broken glass as they race downhill. These moving masses can reach speeds of 80 miles (130 kilometers) per hour within about five seconds. Victims caught in these events seldom escape. Avalanches are most common during and in the 24 hours right after a storm that dumps 12 inches (30 centimeters) or more of fresh snow. The quick pileup overloads the underlying snowpack, which causes a weak layer beneath the slab to fracture. The layers are an archive of winter weather: Big dumps, drought, rain, a hard freeze, and more snow. How the layers bond often determines how easily one will weaken and cause a slide.
Storminess, temperature, wind, slope steepness and orientation (the direction it faces), terrain, vegetation, and general snowpack conditions are all factors that influence whether and how a slope avalanches. Different combinations of these factors create low, moderate, considerable, and high avalanche hazards.
If caught in an avalanche, try to get off the slab. Not easy, in most instances. Skiers and snowboarders can head straight downhill to gather speed then veer left or right out of the slide path. Snowmobilers can punch the throttle to power out of harm's way. No escape? Reach for a tree. No tree? Swim hard. The human body is three times denser than avalanche debris and will sink quickly. As the slide slows, clear air space to breathe. Then punch a hand skyward.
Once the avalanche stops, it settles like concrete. Bodily movement is nearly impossible. Wait—and hope—for a rescue. Statistics show that 93 percent of avalanche victims survive if dug out within 15 minutes. Then the survival rates drop fast. After 45 minutes, only 20 to 30 percent of victims are alive. After two hours, very few people survive.
timerCount('article_body');